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The Fomalhaut system
An eccentric outer belt

Combined HST (optical) and ALMA (850
microns) observations (Kalas et al. 2005;

Boley et al. 2012).

Offseted and eccentric Kuiper-belt
with e ∼ 0.1.

Presence of a belt-shaping massive
body with e ∼ 0.1 expected :
m ∼ 3MJup (Chiang et al. 2009)

Neptune-Saturn mass (Quillen 2006)

Herschel/PACS observation at 70 microns
(Acke et al. 2012).



The Fomalhaut system
Fomalhaut b, near the belt inner edge

A controversial status
Observed at visible wavelenths, but undetected in IR
(Kalas et al. 2008; Marengo et al. 2009; Janson et al. 2012).

Planetary body surrounded by dust ? (Kennedy & Wyatt 2011; Kenyon et al. 2014)
or a planetary ring system ? (Kalas et al. 2008)

Recent photometric studies : no more than Earth or Super-Earth sized
(Janson et al. 2012; Galicher et al. 2013).



The Fomalhaut system
Fomalhaut b

Orbital fitting (Kalas et al. 2013;
Beust et al. 2014)

Peak values : ab ∼ 110− 120AU &
eb ' 0.92− 0.94.

95% level of confidence :
ab ∼ 81− 415AU &
eb ∼ 0.69− 0.98.

Belt-crossing.

Nearly coplanar and close to apsidal
alignment with the belt.

Dynamical analysis :
Fom b is

a low-mass object,

not responsible for the shape of the outer belt.

The first suspect is not the culprit here !



The Fomalhaut system
Investigating the Fomalhaut c hypothesis (Faramaz et al. 2014, arXiv :1409.6868)

Clues for an unseen massive Fom c.

⇓

Stability ?
Highly unstable configuration
(dynamical lifetime� age of the
system, 440 Myr).

Fom b recently set on its orbit.

How ? Why so late ?

=⇒

A dynamical scenario involving Fom c in
the generation of Fom b-like orbits :

shows that Fom b can be naturally put on
its present-day orbit via perturbations by
Fom c.

can explain why it occurs so late and
makes it likely for us to witness.



The key mechanism
Mean-motion resonances with an 0.1 eccentric Fom c

Example of Fom b progenitor originally trapped in
5 :2 MMR on a low-eccentricity orbit with a 3 MJup

Fom c : ab,0 ∼ 58AU and eb,0 6 0.05

Increase of eccentricity →
crossing of the chaotic zone.

Scattering event in the chaotic
zone → Fom b-like orbit ?

MMRs delay scattering events.

The delay depends on
the mass of Fom c :

Jupiter mass Fom c → delay of
several Myr.

Saturn-Neptune mass Fom c →
delay of several 100 Myr.
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The key mechanism
Mean-motion resonances with an 0.1 eccentric Fom c

Example of Fom b progenitor originally trapped in
5 :2 MMR with a 3 MJup Fom c : ab,0 ∼ 58AU and

eb,0 6 0.05
Crossing the orbit of Fom c

Increase of eccentricity →
crossing of the chaotic zone.

Scattering event in the chaotic
zone → Fom b-like orbit ?

MMRs delay scattering events.

The delay depends on
the mass of Fom c :

Jupiter mass Fom c → delay of
several Myr.

Saturn-Neptune mass Fom c →
delay of several 100 Myr.



A 2-step scenario ?
A first summary

1 MMR with an eccentric Fom c
2 Scattering event in the chaotic zone.

First conclusions
A Saturn-Neptune mass Fom c with eccentricity 0.1 :

leads to the production of Fom b-like orbits, with a delay of several 100
Myr, via the 5 :2 MMR.
is compatible with the shaping of the outer belt.
is compatible with the survival of the present transient configuration for
∼ 10 Myr.



A surprising feature
Orientation of Fom b-like orbits originating from the 5 :2 MMRs

Clear tendency for apsidal alignement and coplanarity.



An additional step ?
Closer look at Step 2 : close encounter with Fom c

Step 2 : close encounter with Fom c

(a, e)
Before encounter :

a of the MMR

e allowed by
the MMR.

−→
Conservation of the
Tisserand parameter
links (a, e) and (a′, e′)

(a′, e′)

After encounter :

a′ = 81− 415AU
(95% level of
confidence for Fom b,
Beust et al. 2014)

e′ < 0.69 =⇒
Additional increase
required

Step 3 : secular evolution with an eccentric Fom c
Secular evolution permits eb > 0.69 when orbits are apsidally aligned



A 3-step process
Summary

3 Successive interactions with
the eccentric Fom c :

Step 1 :
MMR
Step 2 :
Close-encounter
Step 3 :
Secular interaction



Conclusion

A possible dynamical history for the Fomalhaut system
A yet undetected eccentric Saturn-Neptune size Fom c.

Fom b originates from an inner MMR with Fom c.

Fom b was set recently on its current orbit by Fom c via a 3-step process.

Producing Fom b-like orbits is a robust process
Low mass material + massive eccentric planet :
MMR → close encounter → secular evolution
=⇒ Fom b like orbits - Cometary activity ?

A 0.1 eccentric perturber naturally produces such orbits in a robust manner.

The production of these orbits can be delayed on timescales > 100 Myr thanks
to MMRs.

Faramaz et al., in prep :
Link with inner belts in Fomalhaut ? (Lebreton et al. 2013)
Link with exozodis ?
(Absil et al. 2013; Ertel et al. 2014, 12 to 30% of stars)
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