Ignas Snellen<sup>2</sup>, Bernhard Brandl<sup>2</sup>, Remco de Kok<sup>2</sup>, Matteo Brogi<sup>2</sup>, Henriette Schwarz<sup>2</sup> <sup>1</sup>Harvard-Smithsonian Center for Astrophysics, USA; <sup>2</sup>Leiden Observatory, The Netherlands; <sup>\*</sup>NASA Sagan Fellow

Snellen et al., Nature, 509, 7498 (2014) arXiv:1404.7506

# The Fast Spin of β Pic b Jayne Birkby<sup>1,2,\*</sup>



# **Detecting molecules with high** dispersion spectroscopy



# At high resolution molecular bands are a forest of individual lines



Wavelength [µm]





# At high resolution molecular bands are a forest of individual lines



Wavelength [µm]





















### **Cross-correlation functions**



CO in HD 209458 b with CRIRES/VLT ( $\lambda/\Delta\lambda = 100\ 000$ ,  $\Delta v = 3$ km/s)



### HDS currently reaches contrast ratios of 10<sup>-4</sup>





### High contrast imaging (HCI) on 8m telescope can reach a raw contrast ratio of 10<sup>-3</sup>

 $10^{-2}$ 

Ratio 10-1 Contr 10-6

10<sup>-8</sup>

10-10

PSF of AO-assisted HCI observations with an 8m telescope at 0.5µm, with a Streh ratio of 0.3 under 0.6 arcsecond seeing conditions (no SDI, ADI, etc)







### Snellen et al. in prep.





# **Results of HDS+HCI for βPic b**



## **Spectra extracted at every position along** the slit and stellar/telluric profile removed

~0.4"



### Spectra extracted at every position along the slit and stellar/telluric profile removed ច Dispersion

| r (arcse    | 1.0  | Pixel | coun | ts on | CF | RIF |
|-------------|------|-------|------|-------|----|-----|
| ve to sta   | 0.5  |       |      |       |    |     |
| tor relativ | 0.0  |       |      |       |    |     |
| on detect   | -0.5 |       |      |       |    |     |
| osition     | -1.0 |       |      |       |    |     |



I pixel = 0.086 arcsec







### Spectra extracted at every position along the slit and stellar/telluric profile removed ច Dispersion

| r (arcse    | 1.0  | Pixel | coun | ts on | CF | RIF |
|-------------|------|-------|------|-------|----|-----|
| ve to sta   | 0.5  |       |      |       |    |     |
| tor relativ | 0.0  |       |      |       |    |     |
| on detect   | -0.5 |       |      |       |    |     |
| osition     | -1.0 |       |      |       |    |     |



I pixel = 0.086 arcsec







### Spectra extracted at every position along the slit and stellar/telluric profile removed Dispersion



### Residual spectra were cross-correlated with model atmospheres containing CO (and $H_2O$ ) at different abundances for a range of temperature-pressure profiles.

I pixel = 0.086 arcsec









### Spectra extracted at every position along the slit and stellar/telluric profile removed Dispersion



# CO detected in $\beta$ Pic b! Strongest CC at RV = -15.4±1.7 km/s at ~0.4"

Velocity [ km sec

Consistent with position from direct imaging and with a circular orbit.  $H_2O$  only seen at SNR~2. No methane.

hour integration







![](_page_17_Picture_5.jpeg)

![](_page_18_Picture_0.jpeg)

# Can HDS+HCl constrain planet formation?

### **Angular momentum** → **formation mechanism?**

![](_page_19_Figure_1.jpeg)

Hughes (2003)

![](_page_19_Picture_3.jpeg)

![](_page_20_Figure_0.jpeg)

Consistent with hot start models induced by accretion of solids? (Bonnefoy/Chilcote talks)

![](_page_20_Picture_4.jpeg)

# Near-term future for HDS+HCI

![](_page_21_Picture_1.jpeg)

### Simulations identify 3.5µm as spectral 'sweet spot' for measuring C/O ratio

![](_page_22_Figure_1.jpeg)

C/O may indicate how and where in the disk planet formed due to different freeze-out temperature of molecules (Öberg et al. 2011)

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Figure_7.jpeg)

### Simulations identify 3.5µm as spectral 'sweet spot' for measuring C/O ratio

![](_page_23_Figure_1.jpeg)

C/O may indicate how and where in the disk planet formed due to different freeze-out temperature of molecules (Öberg et al. 2011)

![](_page_23_Picture_4.jpeg)

![](_page_23_Figure_6.jpeg)

# Long-term future for HDS+HCI

![](_page_24_Picture_1.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

© Marshall Johnson <u>http://www.as.utexas.edu/~mjohnson</u>

![](_page_25_Picture_5.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

© Marshall Johnson <u>http://www.as.utexas.edu/~mjohnson</u>

![](_page_26_Picture_5.jpeg)

# Simulations of HDS+HCI show ELTs can map exoplanet atmospheric surfaces

![](_page_27_Figure_1.jpeg)

Assume CRIRES-like+AO instrument on ELT (39m). Starlight suppressed by factor ~10<sup>4</sup> at planet position. Would take ELT ~half the time to do  $\beta$  Pic b mapping as the VLT took to do brown dwarf mapping (which took ~5 hours, see Crossfield et al. 2014).

![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_0.jpeg)

jbirkby@cfa.harvard.edu

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_4.jpeg)

### Take home message:

1) HDS+HCI yielded an unambiguous detection of CO in a directly imaged planet and measured its rotational broadening. J

jbirkby@cfa.harvard.edu

![](_page_29_Figure_4.jpeg)

### Take home message:

1) HDS+HCI yielded an unambiguous detection of CO in a directly imaged planet and measured its rotational broadening.

### 2) HDS+HCI may place useful constraints on planet formation

![](_page_30_Figure_3.jpeg)

jbirkby@cfa.harvard.edu

![](_page_30_Figure_6.jpeg)

### Take home message:

1) HDS+HCI yielded an unambiguous detection of CO in a directly imaged planet and measured its rotational broadening.

### 2) HDS+HCI may place useful constraints on planet formation

![](_page_31_Figure_3.jpeg)

jbirkby@cfa.harvard.edu

![](_page_31_Figure_6.jpeg)

### 3) HDS+HCI with ELTs will enable surface mapping via Doppler imaging

![](_page_31_Picture_8.jpeg)

![](_page_31_Figure_9.jpeg)

![](_page_31_Picture_11.jpeg)