Young Stellar Associations

Inseok Song 2014 Sep

1. History

- 2. Identification method
- 3. Currently known members
- 4. Missing members
- 5. Challenges toward a full census
- 6. Future

Background

- Unbound star forming group will disperse over time.
- Δv of 1 km/sec \rightarrow over 1 Myr \rightarrow about 1 pc.
- About 10Myr old stellar group with an initial dispersion of about 3 km/sec → about 30pc in size!

Young Associations

Cluster gravitationally bound 1-2pc scale > 100 members overdensity of stars

Association

gravitationally unbound
> 10 pc scale
10-100 members
no overdensity

Identification of moving groups and their

- 1. Proximity in space
- 2. Co-eval
- 3. Co-moving

- TW Hydrae Association (TWA)
 - An unusual grouping of IRAS sources around TW Hydrae was noticed by de la Reza et al. (1989) and Gregorio-Hetem et al. (1992)
 - Then, Kastner et al. (1997) noticed that these stars share similar X-ray and optical properties and form a physical association of about 20pc across.
 - Webb et al. (1999) found six more stars
 - Currently, about 30 known members

Ż	30	09131	-4432	COD-44 4208
	35	10001	-5857	WRA 488
	45	(11058	-2946)	Cod-298887
	47a	11068	-7717	Glass#I
	47b	11068	-7717	Glass#I
	50a	12000	-3715	Heneus
	50	11080	-3715	Hen600B
	1	11091	-7716	Glass#Q
		11195	-2430	HD98800
	55	(11295	-3420)	Cod-337795
	59	119/0	7024	
	62	12345	-6910	
	64	12535	-7623	
	65	12584	-7621	CM Cha
	EE.	12105	6000	Baa. 000

Gregorio-Hetem et al. (1992)

	×		
Star	ROSAT name	(
TW Hya	1RXP J110152-3442.2		
	1RXS J110152.0-344212		
CoD -29° 8887	1RXS J110913.5-300133		
Hen(3) 600	1RXP J111028-3731.8		
	1RXS J111028.9-373204		
HD 98800	1RXS J112205.4-244632		
CoD -33° 7795	1RXS J113155.7-343632		
202			

Kastner et al. (1997)

- β Pictoris moving group (BPMG)
 - Barrado y Navascues et al. (1999) discovered that β Pic shares the same Galactic motion with the group of AT Mic and AU Mic (Poveda et al. 1994)
 - Zuckerman et al. (2001) extended the membership list to a total of 17 star systems.
 - Song, Zuckerman, & Bessell (2003) added 10 more members

Zuckerman, Song, Bessell, & Webb (2001)

- Tucana + Horologium Association (TucHor)
 - Zuckerman & Webb (2000) discovered Tucana Association
 - Torres et al. (2000) discvered Horologium Association
 - Zuckerman, Song, & Webb (2001) noticed these two form a single group
 - Song, Zuckerman, & Bessell (2003) added 11 more members

Zuckerman, Song, & Webb (2001)

Columba, Carina, Argus, AB Doradus groups are identified subsequently.

Currently known young (≤100 Myr) nearby stellar associations					
Name	Age (Myr)	UVW	Dist. (pc)	# of members	
TWA	~8	-9, -18, -4	~50	~30	
β Pic	12-20	-11, -16, -10	~40	~40	
TucHorA	~30	-10, -21, -1	~50	~50	
Columba	~30	-12, -21, -6	~60	~20	
Carina	~30	-11, -22, -6	~70	~15	
Argus	~50	-22, -12, -4	~40	~20	
AB Dor	50-120	-7, -27, -14	~40	~50	
more	10-200	varies	varies	100+	

Distribution of young MG members

Distribution of members

Distribution of members

Distribution of members

Space Motions

Age-Dating Methods

Age	Spectral Type						
(Myr)	BA	F	G	K	M		
10	A-ZAMS	A-ZAMS,Li	Li,X-ray	Li, CMD, Ha	Li, logg,CMD		
50	A-ZAMS	Li,X-ray	Li,X-ray	Li, CMD, Ha	logg?, CMD		
100	-	Li,X-ray	Li,X-ray	Li, X-ray	logg?,CMD		
500	CMD	-	Li,Call HK	X-ray	-		
>1000	CMD	CMD?	Call HK	X-ray?	<u>-</u>		

UVW, vsini, etc. can be used also, but not as decisive as the above methods.
Of course, a companionship to a well age-dated star helps!

Well constrained

Reasonably constrained

Poorly or not constrained

Distributions of members

Many missing low mass members compared to the field star MF.

Identification of low mass members

- Previous candidate selections were limited by ROSAT
- Improved selections of M-type candidates using GALEX & WISE
- Main Difficulty → there is no good age-dating methods for pTTS (> 10Myr) M-type stars

Notable New Surveys

- Malo et al. (2013) : BANYAN
- Kraus et al. (2014) : SEDistance
- Rodrigues et al. (2013-) : GALNYSS

• LDB 5606 A & B

GALNYSS

LDB 5606 A & B → age + motion → new BPMG member

BANYAN

 Malo et al. (2013) : Bayesian approach with known distributions of groups as prior information.

$$P_{XXX}(H_d^g | \theta) = \frac{P(\theta | H_d^g) \times P(H_d^g)}{Normalization}$$

Applied the selection method to 758 X-ray bright stars and spectroscopic follow-up observations.

Some Li-confirmation

A lot of BANYAN candidate members need to be age-dated. However, most of new members being very late-type stars whose age-dating is very difficult.

SED Distances

 Kraus et al. (2014) : Fitting 16 photometric points simultaneously with an assumed evolutionary stage (e.g., assumed radius) → good estimates on distances → selection based on overluminosity.

Kraus et al. (2014)

Over the TucHor region, from 120,000,000 input sources, 497 candidate low mass members were selected (kinematics + overluminosity) → spectroscopic follow-up

Kraus et al. (2014)

 However, even after a dedicated spectroscopic follow-up, it is difficult to assess the membership unambiguously (e.g., too many stars are claimed to be candidate members based only on RV and/ or Ha data)

Name	Vrad	Δv_{rad}	vsin (i)	SpT	EW[Hα]	EW[Li ₆₇₀₈]	Assessments	
	(km s ⁻¹)	(km s ⁻¹)	(km s ⁻¹)	-	(Â)	(mÅ)	RV, Hα, Li	Final
AF Hor	12.6 ± 0.7	0.30	6.6 ± 0.8	M2.1	-3.96	14.8	Y,?,?	Y-RV
CD-35 1167	13.2 ± 0.3	-0.33	4.6 ± 1.2	K4.7	-0.32	48.4	Y,?,?	Y-RV
J04213904-7233562	15.6 ± 0.4	0.75	5.6 ± 0.4	M2.1	-4.05	11.2	Y,?,?	Y-RV
J04240094-5512223	19.0 ± 0.7	2.12	6.9±0.9	M2.0	-3.54	21.2	Y,?,?	Y-RV
J04274963-3327010	18.8 ± 1.4	1.25	15.8 ± 1.3	M4.0	-7.33	-23.3	Y,?,?	Y-RV
J04334610-4511249	21.0 ± 0.3	3.10	4.6 ± 0.2	M1.8	-1.36	-9.2	N,N,?	N - Ha
J04365738-1613065	16.6 ± 1.9	-0.05	27.5 ± 1.3	M3.3	-7.28	3.4	Y,?,?	Y-RV
J04435860-3643188	19.4 ± 0.5	0.98	8.5 ± 0.6	M3.6	-7.99	-3.3	Y,?,?	Y-RV
J04440099-6624036	16.0 ± 0.5	-0.26	5.6 ± 0.4	M0.0	-1.37	21.6	Y,?,?	Y-RV
J04440824-4406473	24.6 ± 0.5	6.23	5.2 ± 0.5	M0.9	-1.71	14.6	N,?,?	N?-RV

Adding dubious young stars

Adding dubious kinematic members with a marginal hint of youth → causing the size of BPMG to be ~100pc
 A ~100pc size for BPMG (even larger than LCC or UCL). Is it OK?

Confirmation Criteria

- When do we accept a candidate as a confirmed member?
 - Is RV consistent to be a member enough?
 - Yes \rightarrow with an unambiguous youth indicator
 - No → without an unambiguous youth indicator
 - Is unambiguous youth indicator enough?
 - Yes → with matching kinematics
 - Maybe → with matching partial kinematics
 - No \rightarrow otherwise
- What about criteria for bona-fide members?
 Are clear youth + good UVW enough?
 - Maybe
 - Convergence on back-traced position with youth + UVW!

Traceback with an outlier rejection

Ages of Moving Groups

 The quality of moving group age estimates are dependent on the list of bona-fide members used in the analysis

Binks & Jefferies (2014). More on later... Are these BPMG members all real?

Needs for improved age indicators

→ Halpha feature strengths can be useful after a careful calibration.

 ← We are in a dire need of better calibrated surface gravity index as a function of ages.
 Add Pleiades and Hyades brown dwarf measurements!!

Future

GAIA

•

→launched on 2013 Dec 19

 $\rightarrow 10^9$ stars observed

→ for brighter stars, distance measured at the 0.001% precision
 → will complete the survey of low mass members down to ~15mag (much less ambiguity for age-dating)

Better age-scale for M-type and L-type dwarfs?