Beta Pictoris with ALMA

Bill Dent, ALMA

Mark Wyatt, A.Jackson, L.Matra, Cambridge Aki Roberge, NASA-Goddard J.C.Augereau, S.Cassasus, S.Corder, J.Greaves, I. de Gregorio, A.Hales, M.Hughes, A-M.Lagrange, B.Matthews, D.Wilner

Sub-mm continuum in β Pic – potted history

Liseau et al 2003 Wilner et al 2011

ALMA data

- Project 2011.0.00087.S
- 2-point 'mosaic'
- 1.5 hrs on-source time, ~18 antennas, max baseline ~400m
- Band 7, 345GHz, beamsize 0.7x0.55arcsec (~12AU)

10

- rms (continuum) = 60 μJy
- Total flux = 61mJy

Continuum from inner 50AU?

Photosphere subtracted: 5-sigma lower on planet side

vidence of planet clearing (?)

Outer 150AU

Peaks at +/- 65AU Asymmetric: ~1.2 flux ratio => mass ratio Emission to ~150AU

mm dust continuum – a model

Fitting symmetric edge-on dust rings to NE and SW emission indicates a dust belt:

- Inner radius 50AU
- Maybe some extra component at <20AU (NE)
- Outer radius ~150AU (less sharp)
- Extra component on SW side at 80AU (radius)

New detection of mm CO

Source: icy comet collisions 7

CO velocity shifts – PV diagram

0.3 Flux (1e-20 W/m2/beam) -50 distance (AU) 50 B -150 -100 100 150 -50 50 0 distance (AU) 6 OAU 4 Velocity (km/s) 2 160AU 0 -2 -4 -6 -150 -100 -50 150 100 0 50 Distance along midplane (AU)

8

- In orbital motion
- Gas belt from 50-160AU
- No CO inside 50AU
- Factor of 2 NE-SW asymmetry

Where is the CO?

Re-projections of CO to face-on view

- Assumes Keplerian rotation
- Location of gas near zero velocity cannot be determined
- Line-of-sight locations have near/far ambiguity

Explanations for the CO clump(s) and tail(s)

(A) Enhanced collisions in resonanceswith an unseen planet. Resonances movethrough the disk with the synodic period.'Tail' length is given by the COdissociation time / synodic period.

(B) A single collision of massive planets.The collision point is stationary. The 'tail' length is given by the CO dissociation time / sidereal period (ie longer than (A))

CO clump coincident with mid-IR dust clump

... which may be moving (Li et al 2012)

Disk vertical structure

CO vs. mm dust

=> CO appears to lie mostly in inclined or 'secondary' disk

Golimowski et al 2006

CO model

- 60-130AU ring
- Total mass ~2x10²⁰kg (3x10⁻⁵M_e)
- Highly asymmetric (2-3x brighter in SW)
- Photodissociation timescale ~130yr (orbit ~700yr)
- Comets: mostly H₂O. CO fraction not well known maybe 10%?
- Continuous replenishment, ~10¹⁹kg/yr of icy bodies
- ~1M_{Jupiter} in 10Myr (!)
- CO clump = enhanced collisions (higher velocity, higher density)
 - 2:1 resonance with Saturn-mass planet at ~60AU OR
 - Remains of collision of ~Mars mass bodies in last ~Myr
- Clump seen clearly in CO because of short gas lifespan

Summary of results

- CO is recently-released (secondary)
- in broad 50-160AU belt
- in plane of inner planet
- highly clumped (unlike dust)
- formed by enhanced cometary collisions
- either resonance with unseen planet or single (~Mars) collision
- CO photodissociation gives [CII] observed by Herschel
- CO can stabilise atomic lines

maybe all debris disks have CO

Future observations with ALMA

1) Higher resolution and different transition

New ALMA Cycle 1 data in band 6 (ACA only so far) also shows CO J=2-1 with a 2-1/3-2 ratio consistent with Tex=20K (same as UV temperature from Roberge etal 2006).

=> CO mass ~2x10²⁰ kg

To come (cycle 2): configuration C32-6 (1.5km) => 0.25" resolution

(near) future observations with ALMA

[CII] from Herschel HIFI (Cataldi et al 2014)

=> Cycle 2 project: CI at 492GHz

Photodissociation product of CO Maybe reconcile CO, [CII] and CI ... ?

Other potential ALMA projects?

- Other lines (HCN, CH₃OH, ¹³CO...)
- Higher resolution (but needs lots of time)
- Inner dust?
- CO clump motion?
- dust clearing compared with beta Pic b motion?
- dust spectral index