Simulating observations of the β -Pictoris system with the JWST/MIRI instrument

P.-O. Lagage¹, A. Boccaletti², P. Baudoz², P. Bouchet¹ and the MIRI Team

¹ Laboratoire AIM Paris-Saclay, CEA Saclay ²LESIA, Observatoire de Paris-Meudon

The James Webb Space Telescope : a 6.5 meter InfraRed telescope in Space ¹

To be launched by an Ariane rocket in 2018

What can JWST/MIRI observations bring?

First observations at 10 μ m of β -Pic b?

Favourable contrast planet/star : **about 10**-³ at 10 microns. Nevertheless need of a coranagraph

Larger PSF: β -Pic b is at best at 0.4 arcsec from its host star \rightarrow at about λ /D at 10 μ m.

Need of more than a Lyot coranagraph

MIRI has such a coranagraph!: a 4 quadrant phase masks³ In fact three of them at λ : 10.6 µm, 11.3 µm, 15.5 µm.

Conclusions

 β -Pic will be a **prime target for MIRI**. The observation of β -Pic b will be challenging. Observing at various times may be a way to remove the dust contribution . In any case a better knowledge of the dust disk will be obtained (for example photometric stability...)

Other observing modes of MIRI, Slit (or slitless) Low Resolution Spectroscopy (LRS) (R=100 at 7 μ m) and Medium Resolution integral field spectroscopy MRS (R=1300-3700), can provide unique information on the dust disk.

Four instruments built and delivered to the NASA Goddard Space Center

NIRCAM: Near-IR CAMera (1-5 μm) NIRSPEC : Near-IR SPECtrometer (1-5 μm) NIRIS: Near-IR Imager and Slitless Spectrograph (0.6-5 μm) MIRI : Mid-IR Instrument (5-28 μm)²

Simulations of β -Pic b observations

MIRI **very sensitive** : two to three orders of magnitude more sensitive than ground-based instruments

When just considering the star and the planet : the planet is detected in **about 1 minute**!

Based on the simulator by A. Boccaletti et al. 4 and 5

But the dust disk will probably dominate at the JWST spatial resolution (MIRI PFOV of 0.11 arcsec). From ⁶ and ⁷, we can derive a flux of the order 3-16 mJy at 0.4 arcsec from the star, to be compared to an expected planet flux in the 3 mJy range .

Note also the intriguing increase of dust around 10 AU found in ⁷, which might be an indication of planet – dust interaction.

References : ¹ for example M. Clampin, SPIE talk June 2014 (YouTube) ² G. Wright et al. 2014, PASP, submitted ³ D. Rouan et al., 2000, PASP 112, 1479 ⁴ A. Boccaletti et al., Adv. Spc. Res., 36, 1099; ⁴5A. Boccaletti et al., PASP, submitted ⁶ P.O. Lagage, P.O., and Pantin, E., 1994 Nature 369, 628; ⁷ E. Pantin E. et al., 1997, A&A 327,1123